概率统计学简介
让我们进入与博彩业息息相关的数学学科—概率学的简介,了解概率学的基本原理有利于我们对足球博彩进行深入分析。 在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成截然不同的两大类:一类是确定性的现象。这类现象是在一定条件下,必定会导致某种确定的结果。举例来说,在标准大气压下,水加热到 100 摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。通常的自然科学各学科就是专门研究和认识这种必然性的,寻求这类必然现象的因果关系,把握它们之间的数量规律。 另一类是不确定性的现象。这类现象是在一定条件下,它的结果是不确定的。举例来说,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各棵种子的发芽情况也不尽相同,有强弱和早晚的分别等等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的 “ 相同条件 ” 是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然原因又是人们无法事先一一能够掌握的。正因为这样,我们在这一类现象中,就无法用必然性的因果关系,对个别现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。 在自然界,在生产、生活中,随机现象十分普遍,也就是说随机现象是大量存在的。比如:每期体育彩票的中奖号码、同一条生产线上生产的灯泡的寿命等,都是随机现象。因此,我们说:随机现象就是:在同样条件下,多次进行同一试验或调查同一现象,所的结果不完全一样,而且无法准确地预测下一次所得结果的现象。随机现象这种结果的不确定性,是由于一些次要的、偶然的原因影响所造成的。 随机现象从表面上看,似乎是杂乱无章的、没有什么规律的现象。但实践证明,如果同类的随机现象大量重复出现,它的总体就呈现出一定的规律性。大量同类随机现象所呈现的这种规律性,随着我们观察的次数的增多而愈加明显。比如掷硬币,每一次投掷很难判断是那一面朝上,但是如果多次重复的掷这枚硬币,就会越来越清楚的发现它们朝上的次数大体相同。 我们把这种由大量同类随机现象所呈现出来的集体规律性,叫做统计规律性。概率统计就是研究大量同类随机现象的统计规律性的数学学科。 概率论 —— 是根据大量同类随机现象的统计规律,对随机现象出现某一结果的可能性作出一种客观的科学判断,对这种出现的可能性大小做出数量上的描述;比较这些可能性的大小、研究它们之间的联系,从而形成一整套数学理论和方法。 概率论产生于十七世纪,本来是有保险事业的发展而产生的,但是来自于赌*博者的请求,却是数学家们思考概率论中问题的源泉。 早在 1654 年,有一个赌*徒梅累向当时的数学家帕斯卡提出一个使他苦恼了很久的问题: “ 两个赌*徒相约赌*若干局,谁先赢 m 局就算赢,全部赌*本就归谁。但是当其中一个人赢了 a (a<m) 局,另一个人赢了 b(b<m) 局的时候,赌*博中止。问:赌*本应该如何分法才合理? ” 后者曾在 1642 年发明了世界上第一台机械加法计算机。 三年后,也就是 1657 年,荷兰著名的天文、物理兼数学家惠更斯企图自己解决这一问题,结果写成了《论机会游戏的计算》一书,这就是最早的概率论著作。